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Abstract The parallelization of the three-center electron
repulsion integrals arising from the variational fitting of the
Coulomb potential is presented. A scheme for dynamical
load balancing of the corresponding loop structure is dis-
cussed. The implementation in the density functional the-
ory program deMon using the message passing interface is
described. The efficiency of the parallelization is analyzed
by selected benchmark calculations.
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1 Introduction

Over the last decade the interest in density functional the-
ory (DFT) methods has grown dramatically within compu-
tational chemistry. Numerous systematic studies have shown
that DFT methods offer a promising alternative to the more
traditional Hartree–Fock approach. Most interestingly, DFT
methods include electron correlation at a formal cubic scal-
ing. This is a fundamental difference to Hartree–Fock based
methods, where the inclusion of correlation typically
increases the computational effort considerably. The rate-
limiting steps in today’s DFT methods using localized atomic
orbitals are the calculations of the two-electron repulsion
integrals and the numerical integration of the exchange-cor-
relation contribution. The use of auxiliary functions has a
long history in DFT methods [1]. Many years ago Sambe
and Felton [2] proposed the use of auxiliary functions in the
framework of Xα implementations using the linear combina-
tion of Gaussian-type orbitals (LCGTO). Based on this early
work Dunlap et al. [3,4] introduced the variational fitting of
the Coulomb potential in order to avoid the evaluation of
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four-center integrals in DFT methods. More recently, the so-
called resolution of the identity has gained attention [5]. The
working formulas are identical to the variational fitting of
the Coulomb potential without constraints. The variational
fitting of the Coulomb potential reduces the formal scaling
to N2 × M , where N is the number of basis functions and
M the number of auxiliary functions. Usually the number of
auxiliary functions is three to five times the number of basis
functions. It is obvious that this fitting can improve the effi-
ciency of DFT methods considerably. Moreover, it has been
shown in the past that the variational approximation of the
Coulomb potential is robust and within the intrinsic accuracy
of LCGTO-DFT methods [6]. This also includes the avail-
ability of accurate gradients and second order properties [7,
8]. For the variational fitting of the Coulomb potential an
approximated density is introduced. It is expanded in atom-
centered auxiliary functions. The expansion coefficients are
obtained variationally by the minimization of the following
self-interaction error:

E2 =
∫∫ | ρ(r1) − ρ̃(r1) || ρ(r2) − ρ̃(r2) |

| r1 − r2 | dr1 dr2 (1.1)

Here,ρ(r) and ρ̃(r) are the orbital and approximated densities,
respectively. In most implementations primitive or contracted
Cartesian Gaussian functions are used for the expansion of
the approximated density. Therefore, three-center electron
repulsion integrals (ERIs) over Cartesian Gaussian functions
have to be evaluated. In earlier implementations, modified
recurrence relations of Obara and Saika (OS) [9], which con-
nect a given integral to others with lower angular momentum,
have been used [10]. In a more recent implementation [11]
a modified OS method [12] was combined with the method
from McMurchie and Davidson (MD) [13] for the evaluation
of the ERIs. In the MD method Hermite Gaussian functions
[14] are used as intermediates to calculate the integrals over
Cartesian Gaussian functions.

Very recently, the use of primitive Hermite Gaussian func-
tions for the expansion of the auxiliary function density has
been proposed in deMon2k [15].The use of primitive Hermite
Gaussian auxiliary functions was first proposed by Mintmire
et al. [16] for the calculation of periodic systems and has
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been implemented in the FILMS [16] and GTOFF [17] codes.
Within deMon2k it was also shown that this auxiliary func-
tion density can be directly used for the calculation of the
exchange-correlation potential [18]. Because the approxi-
mated density is a linear combination of auxiliary functions
the density calculation and, thus, the exchange-correlation
potential calculation at each grid point becomes linear.
Instead, along with the orbital density, products of basis func-
tions have to be evaluated. Obviously, this represents a con-
siderable simplification of the grid work. However, the
number of auxiliary functions is usually three to five times
the number of basis functions. This could deteriorate the per-
formance of the approximated density calculation on the grid
because the calculation of the exponential function is com-
putationally not negligible. Therefore, we are using in our
implementation primitive Hermite Gaussian functions which
are grouped together in sets, sharing the same exponents. As
an example, a d auxiliary function set contains ten primitive
Hermite Gaussians, one s, three p and six d functions, all
with the same exponent. Thus, the number of exponents that
have to be evaluated at each grid point is for an auxiliary
function density of this structure much smaller than for the
corresponding orbital density. Moreover, by using Hermite
Gaussian auxiliary functions the Hermite polynomial recur-
rence relations [14] can be used for the function calculation
on the grid. With this approach the computational demand for
the numerical integration of the exchange-correlation energy
and potential becomes secondary with respect to the calcu-
lation of the ERIs. Therefore, we decided to parallelize the
calculation of these integrals. It should be noted that the same
problem had already been tackled in other electronic struc-
ture codes like NWChem [19,20] and GAMESS–UK [21]
following different strategies.

In this paper we describe the basic strategy for the parall-
elization of the three-center electron repulsion integral cal-
culation using FORTRAN and the message passing interface
(MPI). In the following section the strategy for the parallel-
ization of the DFT code deMon2k [22] using MPI is discussed
in general. In Sect. 3 the parallelization of the three-center
electron repulsion is presented. Benchmark results are dis-
cussed in Sect. 4 and concluding remarks are drawn in the
last section.

2 Parallelization strategy

The parallelized routines of a program usually have to ex-
change data. To handle this communication the widely used
Message Passing Interface (MPI) is employed in deMon2k.
Under MPI each parallel execution is called a task. It should
be noted that such a task is not necessarily connected to its
own node or processor. In principle several tasks may run on
the same processor using MPI. However, for our discussion
here we can assume that each task is connected to its own
CPU.

The transfer of data between tasks is initiated inside a
program by calls to MPI routines. The calls to these system

routines would lead to an error in the link step during the
generation of the serial deMon2k executable on a single pro-
cessor computer because of the absence of the necessary li-
braries. Therefore, the CALL statements for the MPI rou-
tines are replaced by CALL statements of interface routines.
Two sets of these interface routines exist within the deMon2k
source code, one for the serial version and another for the par-
allel version. For the serial version these routines are dummy
routines without any code to be executed. For the parallel
version they include the calls to the MPI routines. This strat-
egy has the advantage that only a few routines have to be
exchanged in order to compile a parallel or serial version of
deMon2k. Obviously, this simplifies code maintenance and
ensures the integrity of both parallel and serial versions. It
also allows an easy change of the messaging system, e.g.
from MPI to shmem or parallel virtual machine (PVM).

3 Parallelization of three-center electron repulsion
integrals

As already described in the introduction, the calculation of the
three-center ERIs becomes the most computationally
demanding step if the exchange-correlation potential is
calculated with the auxiliary function density. In the direct
self-consistent field (SCF) approach these integrals have to be
calculated twice in each SCF step, once for the construction
of the Kohn-Sham matrix elements,

Kµν = Hµν +
∑

k

〈 µν ‖ k 〉 ( xk + zk ), (3.1)

and again for the calculation of the fitting coefficients,

xl =
∑

k

Glk Jk , Jk =
∑
µ,ν

Pµν 〈 µν ‖ k 〉. (3.2)

Here Hµν and Pµν denote elements of the core Hamiltonian
and the density matrix. The fitting coefficients of the approxi-
mated density and the exchange-correlation potential are rep-
resented by xk and zk , respectively. To avoid unnecessary
complication in the presentation we have dropped terms aris-
ing from the normalization of the approximated density (see
[18] for more details). Here we will focus on the parallel com-
putation of the ERIs 〈 µν ‖ k 〉. In this notation, µ and ν refer
to contracted Cartesian Gaussian functions which represent
the basis set of the calculation. The primitive Hermite Gauss-
ian functions used for the auxiliary function expansion are
denoted by k. The symbol ‖ stands for the Coulomb operator
1/|r1 − r2|.

In order to achieve a good efficiency of the parallelization
it is necessary to distribute the work, i.e. the calculation of
the ERIs, homogeneously over the tasks. For this reason the
parallelization of the innermost loop over the auxiliary func-
tions would be too coarse to achieve a good load balancing
of the tasks. It is, therefore, more efficient to parallelize over
the shells or shell combinations. Here a shell defines a set of
contracted basis functions that share the same exponents and
contraction pattern, e.g. s, p or d orbitals. Each shell combi-
nation possesses a set of orbital products µν. The number of
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these products depend on the quantum number of the orbitals
in the two shells. The different number of orbital products in
the various shell combinations as well as the screening of
ERIs based on the maximum overlap integrals of the shell
combinations makes the workload balancing a formidable
task. Moreover, the dynamical screening of shell combina-
tions based on density matrix differences in the direct SCF
procedure forbids any static workload balancing. This situa-
tion calls for a dynamical load balancing as described now.

At the beginning of the SCF, the active number of shell
combinations Nact

shell is calculated, active here referring to all
shell combinations that are not screened. The ERIs are then
homogeneously distributed according to Nact

shell and the num-
ber of orbital products in each shell. The order of the active
shell combination is determined by the ERI loop structure
and for each CPU lower and upper limits within this, implicit
lists are assigned. For each shell combination the inner auxil-
iary function loop is then processed within the assigned task.
The computational time for the ERI calculation in the con-
struction of the Kohn-Sham matrix and the Coulomb vector
J for each task is then measured. Based on these time stamps
a redistribution of the active number of shell combination for
each task is performed according to the following formula:

ω
(n+1)
I = ω

(n)
I

t
(n)
I

N∑
J

ω
(n)
J

t
(n)
J

(3.3)

Here ω
(n)
I represents the fractions of Nact

shell calculated by the
task I in the nth SCF cycle divided by 100, t

(n)
I denotes the

corresponding time stamp for task I in the nth SCF cycle
and N is the total number of available tasks in the calcu-
lation. After 3 SCF cycles a stable and very efficient load
balancing is achieved. We refer to this approach as dynami-
cal ERI load balancing. In order to be more explicit we now
present an example for the dynamical load balancing from
a calculation of the Coulomb vector J on four CPUs. As
test system a C72H146 calculation with the DZVP basis and
the VWN functional was used. In the first step Nact

shell was
28502. The first fractions were ω

(1)
1 = 0.232, ω

(1)
2 = 0.237,

ω
(1)
3 = 0.237 and ω

(1)
4 = 0.293. This results in local Nact

shell

ranges on the 1st CPU from 1 to 6,625, on the 2nd CPU from
6,626 to 13,382, on the 3rd CPU from 13,383 to 20,137 and
on the 4th CPU from 20,138 to 28,502. The corresponding
time stamps for the J vector calculation were t1 = 33.65 s,
t2 = 34.77 s, t3 = 34.28 s and t4 = 37.60 s. From these
timings the normalized time stamps

t
(n)
I,norm = t

(n)
I

N∑
J

t
(n)
J

(3.4)

are obtained as t1,norm = 0.240, t2,norm = 0.248, t3,norm =
0.244, and t4,norm = 0.268. With these time stamps and the
above formula for ω

(n+1)
I new fractions for the distribution

of Nact
shell in the 2nd SCF cycle were calculated. The results

were ω
(2)
1 = 0.243, ω

(2)
2 = 0.240, ω

(2)
3 = 0.243 and ω

(2)
4 =

0.274. In the 2nd SCF cycle Nact
shell is 47,086. The number

is much larger then in the 1st SCF cycle because the tight-
binding density matrix used to start the SCF procedure is
much sparser as the now formed ab-initio density matrix.
The distribution of this number of active shell combinations
according to the ω

(2)
I values leads to the following tI,norm val-

ues: t1,norm = 0.257, t2,norm = 0.253, t3,norm = 0.257 and
t4,norm = 0.233. The corresponding time stamps lead to new
ω

(3)
I for the 3rd SCF cycle. In Table 1 the complete set of

different values for the first six SCF cycles are shown. One
can see that in the 3rd SCF cycle the t1,norm values are about
0.25, which means that each of the four CPUs is doing 1/4
of the work for the calculation of the ERIs even if the Nact

shell

value changes in every SCF cycle. Because of the similar
loop structure for the calculation of the ERIs for the Kohn-
Sham (KS) matrix construction a very similar scheme for
parallelization of this calculation is used. The same scheme
is also applied for the parallelization of the Coulomb integral
gradients.

4 Benchmark results

As already mentioned we used the optimization of the C72H146
Alkene for benchmark calculations. In this system the time
for the calculation of parts related to the three center inte-
grals, e.g. the construction of the KS matrix, the Coulomb
vector J and the Coulomb gradients, represent about 71% of
the total CPU time on one processor. The parts related to the
calculation of the exchange correlation energy are only about
10% of the total CPU time. The system was calculated on a
cluster with Intel r© XeonTM 2.4 GHz CPUs on 1, 2, 4 and
6 CPUs. The results of the efficiency of the parallelized ver-
sion for the different number of CPUs are shown in Fig. 1.
The efficiency EN is defined as the quotient of the calculation
time on one CPU, t1, and the product of the calculation time
on N CPUs, tN , with the number, N , of used CPUs.

EN = t1

NtN
(4.1)

Therefore the efficiency EN multiplied by the number of
CPUs gives the speedup. The curves in Fig. 1 show for the
Coulomb vector J and for the Coulomb gradients a very good
efficiency. The data used for the calculation of the efficiency
values shown in the figure are timings which are the sum over
all steps in all SCF cycles in the calculations. They include
the time for the calculation of the integrals, the distribution
of the different intervals to the CPUs, the refinement of these
intervals and the time for gathering the results. In the case
of the Coulomb gradients the used data are the sum of the
timings of the Coulomb gradient calculation over all optimi-
zation steps. With six CPUs the efficiency for these parts of
the code is over 90%, which represents a speedup of about 5.5.
The efficiency for the calculation of the ERIs for construc-
tion of the KS matrix is less good. Nevertheless, a speedup
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Table 1 Number of active shells Nact
shell and their distribution ω1, ω2, ω3 and ω4. According to the dynamical ERI load balancing for the first six

SCF cycles of C72H146. The corresponding time steps [s] and normalized time steps are also given

SCF cycle
1 2 3 4 5 6

Nact
shell 28502 47086 45482 44144 43222 42930

ω1 0.23244 0.24284 0.23554 0.23743 0.23641 0.23576
ω2 0.23707 0.23970 0.23627 0.23666 0.23507 0.23626
ω3 0.23700 0.24305 0.23529 0.23605 0.23533 0.23661
ω4 0.29349 0.27441 0.29290 0.28985 0.29318 0.29137
t1 33.65 60.80 56.95 56.41 55.21 54.42
t2 34.77 59.83 57.31 56.55 54.78 54.57
t3 34.28 60.92 57.22 56.34 54.76 54.75
t4 37.60 55.25 58.01 55.53 55.40 54.48
t1,norm 0.23984 0.25676 0.24816 0.25090 0.25078 0.24938
t2,norm 0.24783 0.25266 0.24973 0.25152 0.24883 0.25007
t3,norm 0.24433 0.25726 0.24934 0.25059 0.24874 0.25089
t4,norm 0.26800 0.23332 0.25278 0.24699 0.25165 0.24966

Fig. 1 Efficiency of the parallelized ERI Calculations for the Coulomb vector construction (J Vector), the Kohn-Sham (KS) matrix and the
Coulomb gradients depending on the number of CPUs for the optimization of the C72H146 system

with six CPUs of about five is reached. Because of different
screening techniques [15] used for the ERIs in the construc-
tion of the KS matrix it is more difficult for the dynamic load
balancing mechanism to achieve an even workload here. This
is due to other parts in the program that are less efficiently
parallelized. Still an overall speedup of four for six CPUs is
achieved. The efficiency values for larger number of CPUs
will decrease because the parts each CPU has to calculate
will become smaller and smaller. As a result, the dynamic
load balancing becomes less efficient. As the system size in-
creases an opposite effect is observed. This means that the
efficiency of the parallelization increases with system size
for a fixed number of CPUs.

We also benchmarked two other systems. These are ful-
lerene systems with 100 and 240 carbon atoms. Different to
the C72H146 molecule we used here up to 10 CPUs for the
calculations. The efficiency results for the C100 system are
shown in Fig. 2 and for the C240 system in Fig. 3. The re-
sults are similar to the C72H146 molecule. One can also see
that for the fullerenes the efficiency for the calculation with
six CPU is slightly better then for the alkane chain. This
is due to the larger system size. Different from the alkane
chain, the fullerenes show a less continuous behavior in effi-
ciency with respect to the number of CPUs. The main reason
for this different behaviour is the cluster load. Because the
cluster is equipped with dual processor boards a bottleneck in
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Fig. 2 Efficiency of the parallelized ERI Calculations for the Coulomb vector construction (J Vector) and the Kohn-Sham (KS) matrix depending
on the number of CPUs for the C100 system

Fig. 3 Efficiency of the parallelized ERI Calculations for the Coulomb vector construction (J Vector) and the Kohn-Sham (KS) matrix depending
on the number of CPUs for the C240 system

the memory access occurs when both CPUs are used at the
same time. Of course, this bottleneck influences the overall
calculation time. Thus, Figs. 2 and 3 show the behavior of the
parallelized deMon2k code in a real production environment.

5 Conclusions

An efficient algorithm for the parallelization of the calcula-
tion of the three-center electron repulsion integrals in the

framework of the DFT code deMon2k is presented. This
algorithm has the characteristic to adapt to the changing con-
ditions during the SCF cycles. It is also well suited for het-
erogeneous computing environments. This is achieved by a
dynamical load balancing. Because similar situations also
occur in the calculation of the exchange correlation potential
this algorithm can be used here too. Implementation requires
only a few routines to be changed in order to compile a par-
allel or a serial version of the code used. The efficiency of
the parts of the program in which this algorithm is used is,
with six CPUs, about 85% or higher.
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18. Köster AM, Reveles JU, del Campo JM (2004) J Chem Phys

121:3417

19. Apra E, Windus TL, Straatsma TP, Bylaska EJ, de Jong W, Hirata S,
Valiev M, Hackler M, Pollack L, Kowalski K, Harrison R, Dupuis
M, Smith DMA, Nieplocha J, Tipparaju V, Krishnan M, Auer AA,
Brown E, Cisneros G, Fann G, Fruchtl H, Garza J, Hirao K, Kendall
R, Nichols J, Tsemekhman K, Wolinski K, Anchell J, Bernholdt
D, Borowski P, Clark T, Clerc D, Dachsel H, Deegan M, Dyall K,
Elwood D, Glendening E, Gutowski M, Hess A, Jaffe J, Johnson
B, Ju J, Kobayashi R, Kutteh R, Lin Z, Littlefield R, Long X, Meng
B, Nakajima T, Niu S, Rosing M, Sandrone G, Stave M, Taylor H,
Thomas G, van Lenthe J, Wong A, Zhang Z (2005) NWChem, A
computational chemistry package for parallel computers, Version
4.7 Pacific Northwest National Laboratory, Richland, Washington
99352-0999, USA. High performance computational chemistry:
An overview of NWChem a distributed parallel application

20. Kendall RA, Apra E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann
GI, Harrison RJ, Ju J, Nichols JA, Nieplocha J, Straatsma TP,
Windus TL, Wong AT (2000) Comput Phys Comm 128:260–283

21. GAMESS-UK is a package of ab initio programs written by Guest
MF, van Lenthe JH, Kendrick J, Sherwood P with contributions
from Amos RD, Buenker RJ, van Dam H, Dupuis M, Handy NC,
Hillier IH, Knowles PJ, Bonacic-Koutecky V, von Niessen W,
Harrison RJ, Rendell AP, Saunders VR, Schoffel K, Stone AJ,
Tozer D
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